
AD-A268 897I 11 I 1~ l u 1fil 1111l11ffI /1f Ill ? III~llll
NASA Technical Memorandum 106253 AVSCOM

TR-92-C-034

DTIC
ELECTE

Efficient Fault Diagnosis of EP 0 1993

Helicopter Gearboxes AD

H. Chin and K. Danai
University of Massachusetts
Amherst, Massachusetts

and

D.G. Lewicki
Propulsion Directorate
U.S. Army Aviation Systems Command
Lewis Research Center
Cleveland, Ohio

Prepared for the
12th World Congress International Federation of Automatic Control
Sydney, Australia, July 19-23, 1993

93-20452
t o: public release and so-[e; ita

distri.bution is uniimited. I

N/ASA VAIN%ational mautics and S SA ND__ SYSTEMS COMMANMD
SpeAdnntion AVATION MRT ACIMTY

93 815 7



EFFICIENT FAULT DIAGNOSIS OF HELICOPTER GEARBOXES

H. Chin*, K. Danai*, and D. G. Levvicki*
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"U**US. Army Research Laboratory, Vehick Propulsion Directorate, NASA Lewis Research Center, Cleveland,

OH 44135, USA

Abstract. Application of a diagnostic system to a helicopter gearbox is presented. The diagnostic system is a
nonparametric pattern classifier that uses a multi-valed influence matriz (MVIM) as its diagnostic model and
benefits from a fast learning algorithm that enables it to estimate its diagnostic model from a small number
of measurement-fault data. To test this diagnostic system, vibration measurements were collected from a
helicopter gearbox test stand during accelerated fatigue tests and at various fault instances. The diagnostic
results indicate that the MVIM system can accurately detect and diagnose various gearbox faults so long as
they are included in training.

1. INTRODUCTION 2. THE MVIM METHOD

Helicopter drive trains are significant contributors to both Measurements are processed in the MVIM method as il-
maintenance cost and flight safety incidents. Drive trains lustrated in Fig. 1. They are usually filtered first to ob-
comprise almost 30% of maintenance costs and 16% of me- tain a vector of processed measurements P, then they are
chanically related malfunctions that often result in the loss converted to binary numbers through a flagging operation
of aircraft (Chin, 1993). As such, it is crucial that faults (i.e., abnormal measurements characterized by '1' and nor-
be diagnosed in-flight so as to prevent loss of lives. mal ones by '0'), and finally they are analyzed through

Fault diagnosis of helicopter power trains is based pr - the diagnostic model. In the MVIM method, flagging is

ily on vibration monitoring. As such, considerable effort performed by a Flagging Unit that is tuned according to

has been directed toward the identification of features of measures of diagnosability and fault signature variability

vibration that are affected by specific faults (e.g., P , obtained from MVIM so as to improve the fault signa-

1986), and the development of signal processing techniques tures. The MVIM method is explained in detail in (Danai

that can quantify such features. The main problem with and Chin, 1991) and (Chin and Danai, 1992). We will only

this approach, however, is that due to the complexity of discuss the overall concept here for completeness.

helicopter gearboxes and the interaction between their var-
ious components, the individual vibration features do not Raw EOnNs

provide a reliable basis for diagnosis. swy Procese B Faa
D"a Mes"Wmge*8 Mmun a vectr

As an alternative to single-feature based diagnosis, fault ys _ p t ,
diagnosis based on several features can be performed using

pattern classification (Pau, 1981). Among the various pat-
tern classifiers used for diagnosis, artificial neural nets are Fig. 1: Processing of measurements in the MVIM
the most notable due to their nonparametric nature (inde- method
pendence of the probabilistic structure of the system) and
their ability to generate complex decision regions. How-
ever, neural nets generally require extensive training to 2.1. Fault Signature Representation
develop the decision regions (diagnostic model). In cases
such as helicopter power trains, where adequate data may Fault signatures in the MVIM method are represented by
not be available for training, artificial neural nets may mis- the n unit-length columns Vj E WI' of a multi-valued in-
diagnose the fault. fluence matrix (MVIM) A:

In this paper we demonstrate the application of a diagnos- -A = [,L ... , "', V] (1)
tic method that can establish the fault signatures based on
a small number of measurement-fault data. This method where m denotes the number of measurements, and n rep-
utilizes a multi-valued influence matriz (MVIM) as its di- resents the number of faults. Based upon this influence
agnostic model which provides indices for diagnosability of matrix, the faults can be ranked according to tLeir pos-
the system and variability of the fault signatures (Danai sibility of occurrence by the closeness of their influence
and Chin, 1991). These indices are used as feedback to vectors Vj to the vector of flagged measurements Y (see
improve fault signatures through adaptation (Chin and Fig. 2). In the MVIM method, the vector of diagnostic
Danai. 1993). certaintV measures, X, which ranks the faults according to
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their pomsibility of occurrence is defined as total number of false alarms and undetected faults, and
estimates the uniqueness and variability of the estimated

p---- .... ij. - a , .. , a,=) (2) fault signatures from the current values of the influence
matrix, so that it can use these measures as feedback in

where the 1, represent the individual di9anostic certainty the next adaptation round. Adaptation stops when the
mnesism, and the a, denote the individual angles between total number of false alarms and undetected faults are
the influence vectors Vj and the flagged measurement vec- minimized, and the uniqueness and consistency of fault
tor Y (see Fig. 2). signatures are enhanced.

YM The Flagging Unit processes the residuals as follows (see
Fig. 3). The residual vector P E R" is first passed through

_____Hard-Limiter I (consisting of a vector of m thresholds, hi,,
i = 1,...,m) to produce a binary vector Z E B'. This
vector is then multiplied sequentially by the normalized
columns of a Quantization Matrix and then thresholded
by Hard-Limiter II to produce the individual coutlonents
of the flagged measurement vector Y E B-. Training of
the Flagging Unit comprises of adjusting the thresholds of

- " Hard-Limiters I and II and the Quantization Matrix, as
explained in detail in (Chin and Danai, 1992).

Fig. 2: Schematic of diagnostic reasoning in the MVIM
method, illustrated in three dimensional space Fk W

2.2. Eimation of A

The influence vectors in Eq. (1) are not known a-priori and
need to be estimated. In the MVIM method, the error in
diagnosis is used as the basis to estimate/upda* ý the in- Hard Ouwaon Y
fluence vectors. For this purpose, the fault signatures are

updated recursively after the occurrence of each fault to
minimize the sm of the squared diagnostic error associ-

ated with that fault (Danai and Chin, 1991).

2.3. Fault Signature Evaluation Fig. 3: Schematic of the Flagging Unit

One of the unique features of the MVIM method is its
ability to evaluate quantitatively the uniqueness and vari-
ability of fault signatures, so that these quantitative mea- 3. EXPERIMENTAL

sures can be used to improve the flagging operation. In Vibration data were collected at NASA Lewis Research
the MVIM method, the uniqueness of fault signatures is Center. Various component failures in an OH-58A main
represented by the closeness of pairs of influence vectors, rotor transmission were produced during the experiments
and the index of diagnosability is defined to characterize (Lewicki et al., 1992). The configuration of the trans-
the closest pair of fault signatures. mission which was tested in the NASA 500-hp Helicopter

In the MVIM method, the variability of fault signatures Transmission Test Stand is shown in Fig. 4. The vibration

is defined by their variance. For this purpose, the vari- signals were recorded from eight piezoelectric accelerome-

ance matrix of AL is estimated to provide a measure of the ters (frequency range of up to 10 KHz) using an FM tape

variations of individual components of k. Since in the recorder. The signals were recorded once every hour for

MVIM method the components of A are adjusted recur- about one to two minutes per recording (at the tape speed

sively, the variance matrix can be readily estimated during of 30 in/sec, providing a bandwidth of 20 KHz).

training (Chin and Danai, 1993). The index of fault signa- A total of five tests were performed, where each test was
ture variability is defined as the largest component of the run between nine to fifteen days for approximately four
variance matrix, representing the largest variability in the to eight hours a day. New components were used at the
components of A. start of each test. When a component fault was detected
2.4. F n during a test, it was replaced with a new one for the re-

mainder of the test. Eleven failures occurred during these

The influence matrix A is estimated based on the values of tests. The status of various faults during the five tests are
the flagged measurement vector Y. Thus, before the influ- shown in Table 1 where no-fault cases are denoted by zo.
ence matrix is used for diagnostic reasoning, the integrity In Test #1, spiral bevel pinion failure (-4) is estimated to

of the flagging operation needs to be ensured. Flagging in have been present on days 5-9 with sun gear failure (zl)
the MVIM method is performed by a Flagging Unit that also occurring on day 9. No failures occurred in Test #2,
is tuned to improve the diagnosability of the system and so all the nine days for this test are marked as normal.
reduce the variability of the fault signatures (Chin and In Test #3, planet bearing failure (z2) was established
Danai, 1993). to have been present on days 3-4 and 11-12, with hous-

ing crack (Z3) and mast bearing failure (z6) occurring on
The flagging Unit uses a sample set of measurement-fault day 9 and day 13, respectively. Test #4 is estimated to
vectors to tune its parameters iteratively. After each pass have contained planet bearing failure on days 11-12 and
through the training batch, the Flagging Unit counts the sun gear failure on days 14-15. In Test #5, housing crack
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eters were estimated for each segment and averaged over
these segments. The data records as well as the param-

P Rmm"eters obtained from the above processing modules were
then transferred to a personal computer for further analy-

PWtGM" sis (Chin, 1992).

=B" 5. IMPLEMENTATION AND RESULTS

sun B" ff The configuration of the MVIM system as applied to fault
diagnosis of the OH-58A main rotor transmission is illus-
trated in Fig. 5. As shown in this figure, two MVIMs
are trained for each accelerometer. One MVIM to per-
form detection (i.e., to determine whether a fault has oc-

-curred or not), and a diagnostic MVIM to isolate the fault.
Meg Ro~w SwawBea t "gP\ OW so The 54 parameters obtained from the signal analyzer were

0 l wlft used to train and test the MVIM system. The detection
MVIM contained only two columns to characterize the no-

Fig. 4: Configuration of the OH-58A main rotor trans- fault and fault signatures, whereas the diagnostic MVIM

mission contained seven columns, one characterizing the no-fault
signature and the other six representing the signatures of

is assumed to have been present on days 7-11, with sun individal faults. Note that the two MV1Ms can be per-~e~ived as filters '.ith ,iffc:cnt resolutic•r !n order to in-

gear failure (z,) and planet gear failure (xs) occurring on tegrate the results !n order to in-

days10-1 an day11, espctivly.tegrate the results from the MVIMs associated with thedays 10-11 and day 11, respectively, eight accelerometers, a voting scheme was utilized. Test

Table 1: Association of data from each day of the five tests A= #1 Ace ,2 Ac #8
with the no-fauldt case xo and various fault cases.
The siz faults are represented as xj: sun gear
failure, z2: planet bearing failure, X3: hasing
crack, X4: spiral bevel pinion failure, xs: planet W W "
gear failure, and x6: mast bearing failure

Fault Status
Day Test #1 Test #2 Test #3 Test #4 Test #5-

1 Zo Zo ro :0 Xo
2 :0 zo zo Zo x0
3 Z0 Z0 X2 ro ZO

4 :0 z0 02 :0 XO Voting Scheme
5 X4 Zo ZO Z XO

6 X4 zo Zo :o Zo
7 Z4 Zo 0o ZO X3

8 Z4 ZO ZO ZO X3

9 Z4, X1 ZO X3 :O X30

10 ro Zo X3, X1 Fig. 5: Configuration of the MVIM system as applied to
11 X2 X2 z3, X1, Zs the OH-58A main rotor transmission.
12 X2 X2
13 X6 zo #3 and #4 contained most of the failure modes (i.e., 4
14 Xout of 6). Therefore, the parameters from these two tests

were used to train the MVIMs. Not, that not all of thefailure modes were included in training, so the test results

were not expected to be perfect. For training the detection

4. SIGNAL PROCESSING MVIMs, only the 19 parameters from the STAT, BBPS.
and BRGA modules were used. Previous studies on this

In order to identify the effect of faults on the vibration data show that these 19 parameters are adequate for de-
data, the vibration signals obtained from the five tests were tection (Chin, 1993). For training the diagnostic MIVIMs,
digitized and processed by a commercially available signal all of the 54 parameters were utilized.
analyzer (Stewart Hughes, 1987) with four processing mod-
ules: (1) Statistical Analysis (STAT), (2) Bajeband Power The initial values of the detection MVIMs (19 x 2) and di-
Spectrum Analysis (BBPS), (3) Bearing Analysis (BRGA), agnostic MVIMs (54 x 7) were each set to 0 (i.e., matrices

$ and (4) Signal Averaging Analysis (SGAV). with all zero entries), and the initial values of the Quan- -]
tization Matrices (19 x 19 for detection) and (54 x 54 for

For analysis purposes, only one data record per day was diagnosis) were set to identity matrices. The initial thresh-
used for each test. The data records were taken at the old levels for Hard-Limiter I were set at the mean plus one
beginning of the day unless a fault was reported. When a standard deviation of the corresponding parameter, and
fault was detected, the record was taken right before the for Hard-Limiter II, they were set at 0.5. The maximum ..........
fault incident to ensure that the data record reflected the number of epochs for training the detection and diagnos-
fault. Also, in order to reduce estimation errors, each data tic MVIMs was set to 50. After each epoch, the detec-
record was partitioned into sixteen segments, and param- tion/diagnostic performance of MVIMs within the training eS
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set was tested. Training was stopped once perfect detec-
tion/diagnosis was achieved, to avoid overtraiaing (Hertz Table 2: timatsd. ault stati from each day of the fine
et al., 1991). The number of epochs used for individual tsts. Same nottions are adopted a in TabLe
detection MVIMs were: 8, 5, 50, 37, 50, 15, 50, and 50 Estimated Fault Status
for accelerometers #1 to #8, respectively, whereas for di- Day Test #1 Test #2 Test #3 Test #4 Test #5
agnostic MVIMs they were: 50, 1, 2, 2, 26, 50, 50, and 1 Zo zo Zo Zo Zo
50. According to the number of epochs used for individual 2 Zo zo z0 Zo zo
MVIMs, it is clear that the detection MVIls associated 3 zo z0 X2 z0 z0
with accelerometers #3, #5, #7, and #8 did not achieve 4 23 zo X0 Zo zo
perfect detection within the training set. Similarly, the di- 5 X3 Zo Xo o0 zo

agnostic MVIMs associated with accelerometers #1, #6, 6 Z3 oo 20 -6

#7, and #8 did not achieve perfect diagnosis within the 7 3 o zo 2o 23
training set. 8 X3 Z2 Zo Xo Z3

The MVIMs trained on Tests #3 and #4 were evaluated 9 21 Zo 23 zo Z3

for all of the tests. For this purpose, the 19 parameters 10 20 20 20,22

from each of the eight accelerometers were first passed 11 X3 X2 z2, 26

through the corresponding detection MVIM for all of the 12 22 X2

five tests to reflect the occurrence of faults. Once a fault 13 X6 Z0

was posted by a detection MVIM, the set of 54 parame- 14

ters from that accelerometer was passed through the cor- 15

responding diagnostic MVIM. At the final stage, the diag-
nostic certainty measures obtained from the eight diagnos- ACKNOWLEDGEMENTS
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